Finite Element Modeling of Cell-Matrix Adhesive Interaction
نویسندگان
چکیده
منابع مشابه
Finite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کاملFinite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کاملFinite element modeling of the human head under baton impact
Purpose: This research will try to predict damage probability and calculate the main stress resulted from baton impacts by finite element (FE) modeling of the human head considering skull texture, brain and cerebrospinal fluid.Materials and Methods: A three dimensional FE model of the skull-brain complex was constructed for simulating the baton impact. The FE analysis was carried out using ANSY...
متن کاملadhesive joint modeling using compatible element formulation
the use of structural adhesives in automotive structures has been increased recently for their role in noise, vibration and harshness (nvh). therefore, the dynamic behavior of structures containing bonded joints has become an area with numerous investigations over the past decades. development of accurate formulations capable of representing adhesively bonded joint dynamics is a step forward in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2010
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.12.3121